Real-Time Evolution in the NERO Video Game (Winner of CIG 2005 Best Paper Award)
نویسندگان
چکیده
In most modern video games, character behavior is scripted; no matter how many times the player exploits a weakness, that weakness is never repaired. Yet if game characters could learn through interacting with the player, behavior could improve during gameplay, keeping it interesting. This paper introduces the real-time NeuroEvolution of Augmenting Topologies (rtNEAT) method for evolving increasingly complex artificial neural networks in real time, as a game is being played. The rtNEAT method allows agents to change and improve during the game. In fact, rtNEAT makes possible a new genre of video games in which the player teaches a team of agents through a series of customized training exercises. In order to demonstrate this concept in the NeuroEvolving Robotic Operatives (NERO) game, the player trains a team of robots for combat. This paper describes results from this novel application of machine learning, and also demonstrates how multiple agents can evolve and adapt in video games like NERO in real time using rtNEAT. In the future, rtNEAT may allow new kinds of educational and training applications that adapt online as the user gains new skills.
منابع مشابه
Evolving Neural Network Agents in the NERO Video Game
In most modern video games, character behavior is scripted; no matter how many times the player exploits a weakness, that weakness is never repaired. Yet if game characters could learn through interacting with the player, behavior could improve during gameplay, keeping it interesting. This paper introduces the real-time NeuroEvolution of Augmenting Topologies (rtNEAT) method for evolving increa...
متن کاملReal-time Learning in the NERO Video Game
If game characters could learn through interacting with the player, behavior could improve as the game is played, keeping it interesting. The real-time NeuroEvolution of Augmenting Topologies (rtNEAT) method, which can evolve increasingly complex artificial neural networks in real time as a game is being played, will be presented. The rtNEAT method makes possible an entirely new genre of video ...
متن کاملReal-Time Interactive Learning in the NERO Video Game
In the NeuroEvolving Robotic Operatives (NERO) video game, the player trains a team of virtual robots for combat against other players’ teams. The virtual robots learn in real time through interacting with the player. Since NERO was originally released in June, 2005, it has been downloaded over 50,000 times, appeared on Slashdot, and won several honors. The realtime NeuroEvolution of Augmenting...
متن کاملIncorporating Advice into Evolution of Neural Networks
Neuroevolution is a promising learning method in tasks with extremely large state and action spaces and hidden states. Recent advances allow neuroevolution to take place in real time, making it possible to e.g. construct video games with adaptive agents. Often some of the desired behaviors for such agents are known, and it would make sense to prescribe them, rather than requiring evolution to d...
متن کاملThe NERO Real-time Video Game
In most modern video games, character behavior is scripted; no matter how many times the player exploits a weakness, that weakness is never repaired. Yet if game characters could learn through interacting with the player, behavior could improve as the game is played, keeping it interesting. This paper introduces the real-time NeuroEvolution of Augmenting Topologies (rtNEAT) method for evolving ...
متن کامل